단위는 국립표준기술연구소에 보관 중인 백금(90%)과 이리듐(10%) 합금으로 이루어진 킬로그램 원기전자는 가장 가벼운 입자이며, 정확도(正確度, accuracy)는 과학, 산업, 공업, 통계학 분야에서 측정하거나 계산된 양이 실제값과 얼만큼 가까운지를 나타내는 기준이며, 관측의 정교성이나 균질성과는 무관하다.
정확도와 밀접한 관계가 있는 정밀도(精密度, precision)는 여러 번 측정하거나 계산하여 그 결과가 서로 얼만큼 가까운지를 나타내는 기준이다.
단위
국립표준기술연구소에 보관 중인 백금(90%)과 이리듐(10%) 합금으로 이루어진 킬로그램 원기전자는 가장 가벼운 입자이다.
질량의 단위를 이해함에 있어서는 가장 작은 질량을 가지고 있는 전자에 주목하고 이를 질량의 단위로 정하자는 주장도 있다.
그렇게 하면 질량을 측정한 결과는 항상 1 이상의 수로 표현될 것이다.
그러나 이에는 결정적으로 불편한 조건이 따른다. 그것은 전자의 질량이 속도에 의해서 변한다고 하는 상대론의 문제와 관련된다.
변하기 쉬운 것을 단위로 삼을 수는 없는 일이다.
물론 정지질량으로 단위를 삼는다고 하면 그러한 불편이 해결될 수도 있겠으나, 그래도 현실적으로 다른 여러 가지 불편이 있다.
그 중의 하나는 전자의 질량이 너무나 작아서 일상적인 물건의 질량, 예컨대 알사탕 1개의 질량을 나타내기 위해서는 1028이나 되는 방대한 수로 표시할 수밖에 없는데, 이것은 역시 여러 모로 불편하기 때문이다.
한편 측정 조작의 면에서도 전자를 천칭의 분동으로 삼는다는 것은 불가능한 일이다.
이러한 점을 고려한다면 측정의 단위를 정할 때에는 현실적인 생각으로 처리하는 것이 중요함을 알 수가 있다.
그런 의미에서도 1 kg이라는 크기는 매우 알맞은 양이다.
왜냐하면 전자의 질량은 10−30 kg인 한편, 태양은 대략 1030 kg에 상당하므로 1 kg 단위는 그 중간에 해당하기 때문이다.
kg이라는 단위를 정한 프랑스혁명 시대의 학자는 당시 전자의 존재를 알지 못했고, 태양의 질량을 측정할 줄도 몰랐던 것이다.
그들은 0 °C의 물 1,000 cm3의 질량을 1 kg의 단위로 정한 데 지나지 않았다.
이것을 선택한 이유는 일상적으로 우리들 인간에게 다루기 쉬운 크기이며, 전인류가 공유할 수 있는 점, 그리고 자연 현상에 직결된 단위라고 하는 점에 절대적인 의미를 인정한 때문이었던 것이다.
여기에는 자유·박애·평등이라는 혁명사상의 반영이 있다.
왜냐하면 그 이전의 단위는 대개 전제군주가 임의로 정한 것이라든가 지방에 따라서 서로 다른 것이었다.
그러므로 물이라고 하는, 전인류가 공유하는 물질을 기초로 삼아 일정 온도에서의 그 체적을 정하면 질량이 확정된다고 하는 자연과학적인 지식을 동원하여서 이 단위를 정한 의의는 크다.
그리고 그 질량의 본으로서 킬로그램원기를 만들었고, 미터조약의 조직을 통해서 전 세계에 이 단위가 보급된 것이다.
다만 그 후 측정 기술의 진보는 이 때 원기를 만드는 작업에 있어서 약간이긴 하지만 오차가 있었음이 밝혀졌다.
오늘날에는 파리 교외의 국제도량형국에 보관되어 있는 킬로그램원기의 질량이 1 kg으로 통용되고 있다.
이와 같은 사실에 비추어서도 알 수 있듯이 단위의 제정은 결국 하나의 약속으로 이루어지는 것이다.
어떤 시대에 세계의 전문가들이 의논하여 가장 적당하다고 인정한 단위를 조약을 통한 약속으로 세계 각국에서 통용하게 되는 것이다.
그러므로 연구를 더한 결과보다 훌륭한 단위의 제정 방법이 발견되고 그것이 널리 승인받는다면 다시 새로운 조약을 통해서 새로운 단위로 변경하여 통용될 것이다.
1960년에 있은 '미터의 정의의 변경'은 그 대표적인 예이다.
이 때 미터원기는 수십년 전부터의 사명을 마치고 그 임무를 태양 광선의 파장에 인계했던 것이다.
그러나 같은 해에 벌써 길이 단위의 다음 후보로서 레이저의 이용이 화제에 올랐다.
또 질량 단위도 킬로그램원기와 같이 미시적으로 볼 때에 고르지 못한 점이 많이 드러나는 그런 것이 아니고, 격자결합 따위가 극히 적은, 이상에 가까운 결정을 이룬 것으로 바꿔야 한다는 주장이 차츰 강하게 일고 있다.
이와 같이 단위를 개선하려는 노력은 끊임없이 계속되고 있는 것이다.
정확도와 정밀도
정확도(正確度, accuracy)는 과학, 산업, 공업, 통계학 분야에서 측정하거나 계산된 양이 실제값과 얼만큼 가까운지를 나타내는 기준이며, 관측의 정교성이나 균질성과는 무관하다.
그러나 착오와 정오차가 제거된 경우, 정밀도를 정확도의 척도로 사용할 수 있다.
왜냐하면 현실적으로는 실제값을 정확하게 알 수 없기 때문이다.
정확도와 밀접한 관계가 있는 정밀도(精密度, precision)는 여러 번 측정하거나 계산하여 그 결과가 서로 얼만큼 가까운지를 나타내는 기준이다.
관측의 균질성을 나타내며, 관측된 값의 편차가 적을수록 정밀하다.
정밀도는 관측 과정과 우연 오차와 밀접한 관계를 가지며, 관측장비와 관측방법에 크게 영향을 받는다.
여기서 우연 오차는 까닭이 뚜렷하지 않은 오차이며 최소 제곱법에 따른 확률 법칙에 따라 추정할 수 있다.
계산, 측정된 값이 정확도는 높아도 정밀도가 낮은 경우도 있고, 거꾸로 정밀도가 높지만 정확도가 낮은 경우도 있다. 물론, 둘 다 낮거나 둘 다 높을 수도 있다.
'금속재료&측정' 카테고리의 다른 글
여러 분야에서 사용되는 바이패스(Bypass)를 알아보자 (0) | 2024.12.19 |
---|---|
품질을 유지하고 향상하기 위한 전사적 품질 경영 (0) | 2024.09.08 |
재료의 기계적 성질(Mechanical Properties)을 알아보자 (0) | 2024.09.04 |
특정한 요구 사항을 충족하기 위한 규격을 알아보자 (0) | 2024.09.02 |
국가측정표준의 조건인 측정 소급성을 알아보자 (0) | 2024.09.01 |
공차와 규격의 차이점을 알아보자 (0) | 2024.08.31 |